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J .  P H Y S .  A ( G E K .  P H Y S . ) ,  1 9 6 9 ,  S E R .  2 ,  V O L .  2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

Is the sign change of spinors under 2n rotations observable? 

J. S. DOWKER 
Department of Theoretical Physics, University of Manchester 
MS. received 21st ATovember 1968 

Abstract. Hegerfeldt and Kraus’s criticisms of Aharonov and Susskind’s discussion 
of the above question are in~estigated. I t  is shown that the rotation operator applied 
to a wave function can be equivalent to solving Schrodinger’s equation if gravitational 
fields are present. The specific example of quantum mechanics on a cone is con- 
sidered in detail. 

1. Introduction 
Hegerfeldt and Kraus (1968) have criticized the arguments of Aharonov and Susskind 

(1967) which led to an affirmative answer to the question posed in the title to this paper. 
The  result of the latter pair of authors contradicts the standard attitude which seems to be 
founded on the fact that observables are bilinear functions of the spinor. In  the present 
work we wish to make a few comments on this interesting question. 

2. The basic idea 

following gedanken experiment. 
Hegerfeldt and Kraus summarized the calculation of Aharonov and Susskind in the 

4 wave function $(O)  is divided, by some means, into two parts $1 and $ 2 ,  

which are then spatially separated. After this separation $1 is subjected to a rotation through 
angle 6,  

The wave functions are now recombined to give $(e)  where 
$1 --f g(e>$l. 

$44 = 2(6)$1+ $ 2 .  

In  particular we have, in the case of half odd integer spins, 

$(O) = $1+$2, $ ( 2 r )  = $2-$1* 

Thus we might expect to see different things in these two cases. A typical effect would 
be of the interference type which depends on I$(0)12. 

Hegerfeldt and Kraus’s main criticism of this argument is that one cannot perform a 
rotation on just one part of the wave function or, as they say, g(6) is a ‘universal’ operation, 
i.e. it acts everywhere. They rightly point out that the experiment is really a dynamical, 
as opposed to a kinematical, situation. What we really want is exp(iHt)$l and this depends 
strongly on the experimental arrangement. The  application of 9 ( 6 )  to $1 is not, they say, 
the correct recipe for solving Schrodinger’s equation. We wish to quarrel with this last 
statement.i 

It will be appreciated that the situation envisaged here is, in fact, identical with that of the 
‘usual’ Aharonov-Bohm effect (Aharonov and Bohm 1959) except that the multicom- 
ponent wave function now undergoes a non-diagonal change of phase rather than the 
simple electromagnetic phase change : 

$1 + exp(ix1)$1, $2 + exp(ixz)$z. (1) 
Now this latter phase change is the result of a dynamical propagation. We could use, for 
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t I t  is unclear how general Hegerfeldt and Kraus intend their statement to be. 
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example, the WKB or the phase-integral method of solving Schrodinger’s equation (e.g. 
Furry 1962). However we can also just say “subject #1 and #2 to phase transformations (1)”. 
These phase changes are functions of the experimental situation and are different, in general. 
The  particular fact which makes, or a l l o ~ ,  them to be different is the existence of a non- 
trivial (non-zero) electromagnetic field. If no field is present q must equal x2.  FVe refer 
the reader to the original paper of Aharonov and Bohm (1939) for some particular experi- 
mental arrangements. 

#1 and z,h2 are spatially separated and we may describe the fact that x1 is not equal to x2  
by saying that the phase change is a function of position. This ties in with the Yang and 
hIills (1954) method of generating a gauge (here, electromagnetic) field. The  essential 
point of this method is the requirement of invariance under a transformation group whose 
parameters are position dependent. 

Returning to the particular case under consideration the point we wish to make is that 
we can subject #1 and #2 to different rotations, i.e. subject to a position-dependent rotation, 
provided there is a non-trivial gravitational field present. Utiyama (1956) and Kibble (1961) 
have shown that the gravitational field can be introduced as a Yang-hlills gauge field if the 
parameters of the Lorentz transformation are made functions of positi0n.j The reason 
for this can, perhaps, be appreciated if we look upon the generalized invariance as allowing 
independent homogeneous Lorentz transformations at each point of space-time. These 
transformations can be considered to form the symmetry groups of ‘ordinary’ four- 
dimensional spaces attached to each space-time point. Since Riemannian spaces can be 
defined as spaces which are pointwise flat (i.e. pointwise Euclidean or ‘ordinary’), we 
can see how naturally they enter the picture. In  other words the fact that the Lorentz 
transformations are nom associated with each space-time point independently allows the 
underlying space-time manifold the freedom to be Riemannian, i.e. non-flat in general. 
Gravitation comes in when, with Einstein, we associate curved space-time with a true 
gravitational field. 

The  above considerations make it highly likely, at least, that 9 ( 0 )  applied to #1 is, 
or can be, equivalent to solving Schrodinger’s equation and that the words “apply a rotation 
to is simply a short way of describing the result of some dynamical calculation involving 
gravitational fields. 

3. Particular examples 
T o  justify these remarks we should really consider some concrete examples. This we 

proceed to do. 
The  first example is one discussed independently by the present author (Dowker 

1967) and by U’isnivevsky and Xharonov (1967). It may be termed “quantum mechanics 
on a cone”. 

As we know, a cone is locally flat. This is clear because the cone is a developable surface, 
i.e. it can be unrolled onto a plane. If a cone is so unrolled we see that the difference 
between a cone and a plane can be thought of as a topological, and therefore global, one. 
A cone is topologically equivalent to a plane which has had a sector cut out, the two sides of 
the sector being identified. 

The  Riemann-Christoffel curvature tensor is zero everywhere on the surface of a cone 
except at the apex, a singularity of the cone, where it is infinite. It is therefore an ideal 
case in which to discuss a gravitational analogue of the Aharonov-Bohm effect (Dowker 
1967), which, we recall, is concerned with the effects of a confined electromagnetic field, for 
example that of an infinite solenoid. 

Of course actual space is not two dimensional but we can easily incorporate the cone 
idea simply by constructing a space-time which has a cone-like two-dimensional cross 
section. Such a space-time has already been discussed by Marder (1959, 1962) and was 
the starting point of the present author’s previous work (Dowker 1967). The  metric of 
this space-time is given by 

ds2 = dt2 - p2 d42 - A2( dp2 + d 2 )  (2) 
t The germ of this idea can be found in Weyl(l929). 
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where A is a constant. When A is unity, space-time is flat everywhere (p ,  4 and x are 
cylindrical coordinates) but if A differs from one a non-trivial gravitational field is present. 
This is easily seen from the form of the geodesics, 

pcos ($+p) = pocosp 

which does not describe a straight line, unless A is unity. 

is best seen by changing variables so that ds2 ‘looks flat’. Thus define 
The  cross sections z = const., t = const. are topologically equivalent to a cone. This 

whence 
ds2 = dt2-p ’2  d4’2-dp’2-&’2, 

However we must recognize the fact that the whole of the (p,  4) plane does not map onto 
the whole of the (p ’ ,  4’) plane but rather onto that part of this plane that is left when a 
sector of angle 27~/A has been removed (we choose A 2 1) and the sides of the sector 
identified. Thus the ( p ,  4) plane is topologically equivalent to aconeof anglesin-l{(A - l)/A}. 
We emphasize that it is the points (t, 4, p, z) ,  (4 modulo 2 ~ ) ,  that are in one to one corres- 
pondence with the points of physical space-time. 

Let us now consider the equations of motion in a curved space-time. For our purposes 
here the exact form of these equations is not essential. The  point is that in them the 
derivative of the multicomponent field or wave function + occurs as the covariant deriva- 
tive Tu+, where 

Fu being a matrix connection. The theory of spin in curved space (see e.g. Dowker and 
Dowker 1966) gives for I?, the expression 

vu4 = (8, + ru)+ 

where I?,: is the usual Christoffel symbol and the a and b are quantities which locally 
diagonalize the actual metric g,,, to the T , ~ ,  = ( -  1, - 1, - 1, l), one thus 

I’  v 
r l i L , V ,  = a.b,a.,’,gu, * 

The 1:’ are the generators of the homogeneous Lorentz group in the representation to 
which $I belongs. We can think of the ( j ,  0) representations for definiteness. 

The a and b define at each point a set of Cartesian axes-the local ‘tetrad’ and the forma- 
lism defined by the equations (3) and (4) is called the tetrad formalism. 

The argument now proceeds as in the electromagnetic calculation. We rapidly sketch 
it here. Consider a wave function J, to be split into two beams +2 at the point A, 4 = 0 
and p = po. These beams then pass on opposite sides of the z axis and recombine at, say, 
point B, 4 = 5 T ,  p = pol.. We want the value of + at B. T o  obtain this we can either solve 
the equations of motion directly, perhaps using an approximation scheme or Feynman’s 
action principle, or we can divide the region into two field-free parts-those above and 
below the x axis (4 = 0) and treat these separately. 

It should be tolerably clear that, by analogy with the Aharonov-Bohm calculation, 
from A to B, $, will undergo the change 
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and similarly for +z 
B 

M A )  -+ +z(B) = T exp ( - rlL dxlL + %) +z(A). 
A 

The paths of integration are the paths of the corresponding beams. Since A is the common 
starting point we can take $J~(X) = $2(A) = +(A). 

The  only difference from the electromagnetic case is the necessity for the ordering 
operator T which acts with respect to the parameter labelling the points on the paths 
(Bergmann 1962, Feynman 1951). 

The quantities 8/3, and S/3, are diagonal phase changes and are composed of the ordinary 
optical phase change and an effect due to the replacement of rlUv by g,, in the equation of 
motion. We are not interested in Sp, and 8,82 and shall henceforth ignore them. 

In  general, because of the T operator, the phase multiplier 

T exp (- 1," I?,' dx') 

is not equivalent to a 'Lorentz' transformation ; however, in our example this is so. Further, 
in the present instance because RuvaB vanishes in the two regions, the paths of integration 
in (5) can be any paths homotopic to the 'dynamical' ones. 

We now compute the changes (5) explicitly for &larder's metric, and choose the tetrad 
formalism given by the expressions for a and b 

(x' = p ,  x2 = 6, x3 = x, xo = t ) .  

This means that the local tetrad axes are parallel to the local t ,  p ,  6, x axes (cf. Brill and 
Wheeler 1957). Computation yields for the Christoffel symbols and the spinor connection 
the values 

2 1  1 P r12 = -, rz2 = - - 
P A2 

rl = r3 = rn = 0 

J l I 2 ,  is the generator of spatial rotations about the x axis 

and equation (6) represents rotations through angles rlA and -VIA about this axis. 
However we must remember that part of this rotation is due to the rotation of the local 
tetrad frame and so now, with respect to a tetrad of $xed orientation, we have the spinor 
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transformations 

whence 

with 

#PI = + #2(B) 

= 9( -&e){ B(6) exp( iSg,) + exp(iSP,)]#(A) 

The  overall unitary factor, 9( - Be), of the unsplit wave function is immaterial. The  
factor in braces is the important one. If A is 1, i.e. space-time is flat everywhere, 0 is zero 
and this factor is the purely 'optical' one. The  real question is whether 0 ever equals 257n 
i.e. whether 

1 
l - n  

A = A  =- n -  

is a physical possibility. Since the sign of A is immaterial A, is equivalent to A,, = 1. 
A, is infinite and gives a singular metric which we rule out. The  essential point about the 
remaining A,, for n greater than two, is that their magnitudes are all less than 1. Wow, in 
this case, classical particles are repelled by the singularity at p = 0. This can be deduced 
from the geodesic equations. Thus  we might expect something odd to occur inside the 
source generating the gravitational field when A becomes less than 1. T o  see this explicitly 
we shall construct a source metric such that (2) is valid in some exterior region and matches 
onto the source, or interior, metric at some radius. This was, in fact, done by Marder 
(1959). He rewrote the exterior metric by introducing a new radial coordinate p1 equal to 
p'- K where K is a positive constant. Then 

ds2 = dt2-dp12-AA2(pl+K)2 d$2-dz'2, 

He found, for A > 1, the interior solution 

ds2 = dt2 - dp12 -f2('l) d$, - dz'2 
.f = z-l  sin zpl 

where 
1 1 (A,- 1 ) 1 ' 2  z = -cos-1-. ____ 
a1 A al+K 

the matching radius, or boundary of the source, being p1 = a,. 
From Einstein's equations the energy density, Too,  follows as the positive value 

Too = z2/8.rr. 

If A is less than 1 it is not difficult to see by inspection that (7) still holds with 

and 

but now we find for the energy density the negative value 
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This is as we would expect if the source is to be repulsive. I t  is, however, unphysical. 
Kegative masses have never been seen. 

Thus we can never reach the interesting values 6' = 2nn and the unobservability of the 
spinor sign change is reduced to questions of detailed dynamics and not principle. 

T o  see whether a similar situation holds for other gravitational fields we shall briefly 
consider another example-that of the Schwarzschild solution. All the relevant expressions 
have been evaluated by Brill and Wheeler (1957) and we shall just copy their answers. 
Although they were specifically concerned with spin half their formula for the spinor 
connection Prl is quite general. Spherical polar coordinates Y, 8, $, t ,  = (d, x2, x3, xo), are 
used and again the local tetrad axes are chosen to be parallel to the local Y, 8, $, t axes. For 
Fu we have 

The  path formed by the two beams is assumed to circulate the z axis and to be for fixed 0, 
say 4 7  and Y = a. Then the relevant phase change is?, allowing for the rotation of the 
local tetrad frame, 

This expression equals 277 when 2m equals a. This means that the beams must pass where 
the metric is infinite, as in the previous case. For physical sources this singularity 'occurs' 
inside the source where the exterior solution does not apply anyway. Again, the observability 
of the spinor sign change is limited by physical considerations. 

Whether it is possible in principle or practice to make the beams undergo multiple 
circuits of the z axis, which would alter the above situation, the author does not know. 

4. Conclusion and discussion 
The two examples we have discussed seem to rule out the possibility of a test of the 

observability of the spinor sign change using a gravitational field to rotate the wave functions. 
It may be possible to prove this more generally. 

The  experimental arrangement we have had in mind has been that described in 5 3. 
However there does not seem to be any objection in principle to the arrangement whereby a 
beam is made to pass any number of times, say m, around the z axis and then allowed to 
interfere with itself at the starting point much as in the Sagnac experiment. In  this case 
instead of requiring A = (1 -n)-' vie would need A = m(m -.)-I which can easily be 
greater than 1. 

Because of the definite dynamical origin of the rotations we do not think that we can 
say, with Hegerfeldt and Kraus, that the above result (if 6' can equal 27) implies that rotation 
through zero angle produces an effect.: 

We note that a generalization of Marder's space-time easily results if we take a space- 
time whose constant x cross sections are the three-dimensional space-times discussed by 
Staruskiewicz (1963). In  this way we could discuss the gravitational analogue of the two 
(or more) solenoids considered by Peshkin et al. (1961). 

Finally we should just like to say that the 'results' of the present paper raise again the 
interesting question of what happens to the theories of quantum mechanics and spin on 
non-orientable surfaces Mobius strips, Clifford-Klein surfaces, etc. 

Hegerfeldt and Kraus (private communication, since the preparation of this paper) 
have explained that the dynamical situation they had in mind was literally that of rotating 

-F For theoretical convenience we have assumed that t is constant. 
j: Hegerfeldt and Kraus's argument applies only to the kinematic situation, as they themselves 

imply. 
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the ‘box’ which contained In 
this case, there is no disagreement between Hegerfeldt and Kraus and ourselves, 

Concerning the observability of the sign change we should like to say that it is just as 
observable as the sign change in the Pauli principle. Exchanging identical fermions 
reverses the sign of the wave function but alters nothing physically, yet no one would say the 
exclusion principle was unobservable. 
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